Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-[(4-Bromophenyl)diazenyl]-2-ethoxyaniline

Mohammad Reza Melardi,^a* Jafar Attar Gharamaleki,^b Soheyla Rezabeyk^a and Mohammad Kazem Rofouei^b

^aDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, and ^bFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran Correspondence e-mail: m.melardi@kiau.ac.ir

Received 28 October 2011; accepted 16 November 2011

Key indicators: single-crystal X-ray study: T = 200 K: mean $\sigma(C-C) = 0.008$ Å: R factor = 0.065; wR factor = 0.198; data-to-parameter ratio = 13.5.

The title compound, C₁₄H₁₄BrN₃O, exhibits a *trans* geometry about the -N-N- double bond. The dihedral angle between the benzene rings is 24.01 (5)°. An intramolecular $N-H \cdots O$ hydrogen bond occurs. In the crystal, intermolecular N- $H \cdots N$ hydrogen bonds between the amine groups lead to the formation of a C(8) polymeric chain along [101].

Related literature

For the synthesis and crystal structures of similar diazenyl compounds, see: de Wit et al. (2008); Yazici et al. (2006). For crystal structure of a chloro analogue of the title compound, see: Rofouei et al. (2011). For graph-set motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

C14H14BrN3O $M_r = 320.19$ Monoclinic, $P2_1/n$ a = 13.219 (2) Å b = 8.8289 (17) Åc = 13.506 (2) Å $\beta = 118.855 \ (6)^{\circ}$

```
V = 1380.6 (4) Å<sup>3</sup>
Z = 4
Mo K\alpha radiation
\mu = 2.97 \text{ mm}^{-1}
T = 200 \text{ K}
0.40 \times 0.20 \times 0.10 \text{ mm}
```

Data collection

```
Bruker SMART X2S benchtop
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2009)
  T_{\min} = 0.383, T_{\max} = 0.755
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.065$	H atoms treated by a mixture of
$wR(F^2) = 0.198$	independent and constrained
S = 1.00	refinement
2408 reflections	$\Delta \rho_{\rm max} = 0.98 \text{ e} \text{ Å}^{-3}$
178 parameters	$\Delta \rho_{\rm min} = -1.11 \text{ e } \text{\AA}^{-3}$
2 restraints	

8299 measured reflections

 $R_{\rm int} = 0.075$

2408 independent reflections

1775 reflections with $I > 2\Sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D = 11 \cdot 21$	$D=\Pi$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3 - H3A \cdots N2^{i}$ $N3 - H3B \cdots O1$	0.88 (1)	2.38 (2)	3.228 (6)	163 (5)
	0.88 (1)	2.28 (5)	2.628 (5)	103 (4)

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: SMART X2S (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

JAG thanks the American Crystallographic Association for a scholarship to the ACA summer school, and Bruce C. Noll of Bruker AXS Inc., and Peter Müller of the Massachusetts Institute of Technology for their assistance in this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2476).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). SMART X2S, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Rofouei, M. K., Ghalami, Z., Attar Gharamaleki, J., Bruno, G. & Amiri Rudbari, H. (2011). Acta Cryst. E67, o1852.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wit, J. de, Alberda van Ekenstein, G. O. R., ten Brinke, G. & Meetsma, A. (2008). Acta Cryst. E64, o1048.
- Yazıcı, S., Albayrak, C., Ağar, E., Şenel, I. & Büyükgüngör, O. (2006). Acta Cryst. E62, 0521-0522.

supplementary materials

Acta Cryst. (2011). E67, o3396 [doi:10.1107/S160053681104877X]

4-[(4-Bromophenyl)diazenyl]-2-ethoxyaniline

M. R. Melardi, J. Attar Gharamaleki, S. Rezabeyk and M. K. Rofouei

Comment

We have recenly reported the crystal structure of 4-[(4-chlorophenyl)diazenyl]-3-methoxyaniline (Rofouei *et al.*, 2011), a chloro analogue of the title compound. Diazenyl compounds characterized by having a diazo group (—N=N—) commonly adopt the *trans* configuration in the ground state. In continuation to our work in this field, we now report the crystal structure of the title compound.

The title molecule (Fig. 1) adopts a *trans* configuration about the -N1=N2- double bond and the C1—N1—N2—C9 dihedral angle is 177.3 (4)°. The molecular dimensions in the title compound are similar to the corresponding dimensions reported in other azo compounds (Yazici *et al.*, 2006; de Wit *et al.*, 2008; Rofouei *et al.*, 2011).

In the structure of the title compound, the molecules are linked into chain-like polymers along the *c* axis, with C(8) graph set motif (Bernstein *et al.*, 1995), through N3—H3A···N2ⁱ hydrogen bonds with D···A separation of 3.228 (6) Å (Fig. 2 and Tab. 1). The structure is further consolidated by N3—H3A···O1 intramolecular hydrogen bond with D···A separation of 2.628 (5) Å.

Experimental

To a 100 ml flask in an ice bath, was added (0.349 g, 2 mmol) *p*-boromoaniline and (3.65 g, 0.1 mol) of HCl (d = 1.18 g.ml⁻¹). To the obtained solution, was added dropwise a solution of sodium nitrite (0.14 g in 5 ml H₂O). Then, a diluted solution of *o*-ethoxyaniline (0.244 g, 2 mmol) in methanol (5 ml) was added to the above solution. The *p*H of the solution was adjusted at about 6–7 by adding a solution of 10% of sodium acetate. The solution was stirred for about an hour, giving an orange precipitate. It was then filtered off and dried in vacuum. After dissolving in diethylether and recrystallization, red crystals of the title compound were obtained. *M*.p. 373–376 K.

Refinement

Hydrogen atoms bonded to carbon were included at geometrically idealized positions and refined in riding mode with distances H—C = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms, respectively with $U_{iso}(H)$ set to 1.2(1.5 for methyl) $U_{eq}(C)$. Hydrogen atoms bonded to N were located from a difference Fourier map and refined with the N—H distances restrained to 0.88 (1) Å and $U_{iso}(H) = 1.2U_{eq}(N)$.

Figures

Fig. 1. The molecular structure of the title compound, displacement ellipsoids are drawn at 50% probability level.

Fig. 2. A part of the unit cell showing N3—H3A···N2 hydrogen bonds, to produce polymeric chain of the title molecules along the c axis.

4-[(4-Bromophenyl)diazenyl]-2-ethoxyaniline

Crystal data

C ₁₄ H ₁₄ BrN ₃ O	F(000) = 648
$M_r = 320.19$	$D_{\rm x} = 1.540 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2935 reflections
a = 13.219 (2) Å	$\theta = 2.9 - 24.8^{\circ}$
b = 8.8289 (17) Å	$\mu = 2.97 \text{ mm}^{-1}$
c = 13.506 (2) Å	T = 200 K
$\beta = 118.855 \ (6)^{\circ}$	Block, yellow
$V = 1380.6 (4) \text{ Å}^3$	$0.40\times0.20\times0.10~mm$
7 = 4	

Data collection

Bruker SMART X2S benchtop diffractometer	2408 independent reflections
Radiation source: fine-focus sealed tube	1775 reflections with $I > 2\Sigma(I)$
graphite	$R_{\rm int} = 0.075$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 1.8^{\circ}$
ω scans	$h = -15 \rightarrow 13$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$k = -10 \rightarrow 10$
$T_{\min} = 0.383, T_{\max} = 0.755$	$l = -16 \rightarrow 16$
8299 measured reflections	

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

<i>S</i> = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.1373P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
2408 reflections	$(\Delta/\sigma)_{max} < 0.001$
178 parameters	$\Delta \rho_{\text{max}} = 0.98 \text{ e} \text{ Å}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -1.11 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. ¹H NMR (300 MHz, *d*⁶-DMSO): 1.31 (3*H*, CH₃), 4.10 (2*H*, OCH₂), 6.72–7.68 (7*H*, aromatic ring) and 5.87 (2*H*, NH₂ groups). ¹³C NMR (100 MHz, DMSO): 14.63 (CH₃), 63.44 (OCH₂), 101.60–151.34 (C atoms of aromatic rings).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ х y ZBr1 0.62107 (6) 0.84573 (8) 0.0740 (4) 0.08362 (5) 01 0.1305 (4) -0.0555(3)0.0469 (9) -0.1368(3)N1 -0.1255(3)0.1207 (4) 0.4681 (5) 0.0441 (10) N2 0.1867(4)0.4891(4)-0.0227(3)0.0444(10)N3 -0.2711(4)0.1068(5)-0.2750(4)0.0477 (11) H3A 0.057* -0.296(5)0.071 (6) -0.343(2)H3B 0.057* -0.270(5)0.039(5)-0.227(3)C1 0.0220 (4) 0.3782 (5) -0.1537(4)0.0380(11) C2 -0.0054(4)0.3036 (5) -0.0774(4)0.0396 (11) H2 0.047* 0.0424 0.3161 0.0018 C3 -0.1012(4)0.2134 (5) -0.1179(4)0.0364 (11) C4 -0.1750(4)0.1953 (5) -0.2364(4)0.0368 (11) C5 -0.1446(4)0.2697 (5) -0.3088(4)0.0399 (11) Н5 -0.19170.2580 -0.38810.048* C6 -0.0488(5)0.3591 (5) -0.2688(4)0.0438 (13) H6 -0.03050.4089 -0.32050.053* C7 -0.0682(5)0.1345 (6) 0.0658 (4) 0.0454 (13) -0.05980.2399 0.0937 0.054* H7A H7B 0.0096 0.0923 0.0900 0.054* C8 -0.1313(5)0.0403 (7) 0.1108 (4) 0.0601 (15) H8A -0.08760.0388 0.1936 0.090* H8B -0.06330.0818 0.090* -0.1396H8C -0.20790.0839 0.0864 0.090* C9 0.2870 (4) 0.5761 (5) -0.0032(4)0.0429 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C10	0.3484 (5)	0.6451 (5)	0.0999 (4)	0.0472 (13)
H10	0.3240	0.6346	0.1552	0.057*
C11	0.4442 (4)	0.7285 (6)	0.1237 (4)	0.0461 (12)
H11	0.4841	0.7798	0.1940	0.055*
C12	0.4832 (4)	0.7385 (6)	0.0462 (4)	0.0479 (13)
C13	0.4241 (6)	0.6680 (7)	-0.0578 (5)	0.0611 (17)
H13	0.4510	0.6746	-0.1115	0.073*
C14	0.3252 (5)	0.5878 (7)	-0.0819 (4)	0.0566 (15)
H14	0.2829	0.5401	-0.1534	0.068*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0634 (5)	0.0968 (6)	0.0643 (5)	-0.0445 (4)	0.0328 (4)	-0.0213 (3)
01	0.043 (2)	0.060 (2)	0.0371 (17)	-0.0123 (17)	0.0188 (17)	-0.0022 (15)
N1	0.046 (3)	0.043 (2)	0.040 (2)	-0.0016 (19)	0.018 (2)	0.0031 (17)
N2	0.049 (3)	0.043 (2)	0.043 (2)	0.0051 (19)	0.024 (2)	0.0064 (18)
N3	0.045 (3)	0.055 (3)	0.041 (2)	-0.014 (2)	0.019 (2)	-0.0120 (19)
C1	0.034 (3)	0.037 (2)	0.044 (3)	-0.002 (2)	0.020 (2)	-0.0029 (19)
C2	0.031 (3)	0.043 (2)	0.039 (2)	0.000 (2)	0.012 (2)	-0.001 (2)
C3	0.031 (3)	0.038 (2)	0.042 (3)	0.001 (2)	0.019 (2)	-0.002 (2)
C4	0.032 (3)	0.035 (2)	0.043 (3)	0.001 (2)	0.018 (2)	-0.0042 (19)
C5	0.041 (3)	0.043 (3)	0.037 (3)	-0.001 (2)	0.020 (2)	-0.005 (2)
C6	0.055 (3)	0.036 (2)	0.049 (3)	0.000 (2)	0.031 (3)	-0.002 (2)
C7	0.049 (3)	0.049 (3)	0.037 (3)	-0.001 (2)	0.019 (2)	-0.001 (2)
C8	0.068 (4)	0.060 (3)	0.050 (3)	-0.010 (3)	0.028 (3)	0.005 (3)
C9	0.044 (3)	0.043 (3)	0.045 (3)	0.000 (2)	0.023 (2)	0.005 (2)
C10	0.050 (3)	0.049 (3)	0.046 (3)	-0.004 (2)	0.025 (3)	0.002 (2)
C11	0.049 (3)	0.047 (3)	0.036 (3)	-0.004 (2)	0.017 (2)	0.000 (2)
C12	0.040 (3)	0.054 (3)	0.046 (3)	-0.012 (2)	0.018 (2)	0.001 (2)
C13	0.062 (4)	0.081 (4)	0.050 (3)	-0.034 (3)	0.035 (3)	-0.016 (3)
C14	0.050 (3)	0.068 (4)	0.043 (3)	-0.014 (3)	0.015 (3)	-0.010 (3)

Geometric parameters (Å, °)

Br1—C12	1.893 (5)	С6—Н6	0.9500
O1—C3	1.361 (6)	С7—С8	1.498 (8)
O1—C7	1.439 (6)	С7—Н7А	0.9900
N1—N2	1.246 (5)	С7—Н7В	0.9900
N1—C1	1.412 (6)	С8—Н8А	0.9800
N2—C9	1.442 (7)	С8—Н8В	0.9800
N3—C4	1.363 (7)	C8—H8C	0.9800
N3—H3A	0.876 (10)	C9—C10	1.371 (7)
N3—H3B	0.879 (10)	C9—C14	1.383 (8)
C1—C6	1.384 (7)	C10-C11	1.363 (7)
C1—C2	1.410 (7)	C10—H10	0.9500
C2—C3	1.367 (7)	C11—C12	1.375 (7)
С2—Н2	0.9500	C11—H11	0.9500
C3—C4	1.424 (7)	C12—C13	1.383 (7)

C4—C5	1.388 (7)	C13—C14	1.380 (9)
C5—C6	1.363 (7)	С13—Н13	0.9500
С5—Н5	0.9500	C14—H14	0.9500
C3—O1—C7	118.4 (4)	O1—C7—H7B	110.5
N2—N1—C1	116.3 (4)	C8—C7—H7B	110.5
N1—N2—C9	111.8 (4)	H7A—C7—H7B	108.7
C4—N3—H3A	114 (4)	С7—С8—Н8А	109.5
C4—N3—H3B	116 (4)	C7—C8—H8B	109.5
H3A—N3—H3B	113 (5)	H8A—C8—H8B	109.5
C6—C1—C2	119.4 (4)	С7—С8—Н8С	109.5
C6—C1—N1	114.1 (4)	H8A—C8—H8C	109.5
C2-C1-N1	126.5 (4)	H8B—C8—H8C	109.5
C3—C2—C1	119.6 (4)	C10-C9-C14	119.4 (5)
C3—C2—H2	120.2	C10-C9-N2	117.6 (5)
C1—C2—H2	120.2	C14—C9—N2	123.0 (5)
O1—C3—C2	126.5 (4)	C11—C10—C9	120.4 (5)
01-C3-C4	112.5 (4)	C11—C10—H10	119.8
C2—C3—C4	121.0 (4)	C9—C10—H10	119.8
N3-C4-C5	122.3 (4)	C10-C11-C12	120.2 (5)
N3-C4-C3	120.0(4)	C10-C11-H11	119.9
$C_{5}-C_{4}-C_{3}$	1177(4)	C12-C11-H11	119.9
C6-C5-C4	121.6 (4)	C11-C12-C13	120.6 (5)
С6—С5—Н5	119.2	C11-C12-Br1	1197(4)
C4—C5—H5	119.2	C13-C12-Br1	119.7 (4)
C5-C6-C1	120.8 (5)	C14-C13-C12	118 4 (5)
C5—C6—H6	119.6	C14—C13—H13	120.8
C1—C6—H6	119.6	C12—C13—H13	120.8
01	106.3 (4)	C13-C14-C9	120.9 (5)
01—C7—H7A	110.5	C13-C14-H14	119.6
C8—C7—H7A	110.5	C9—C14—H14	119.6
C1—N1—N2—C9	177.3 (4)	C2—C1—C6—C5	0.2 (7)
N2—N1—C1—C6	179.6 (4)	N1—C1—C6—C5	177.1 (4)
N2—N1—C1—C2	-3.8 (7)	C3—O1—C7—C8	177.1 (5)
C6—C1—C2—C3	0.2 (7)	N1—N2—C9—C10	161.2 (5)
N1—C1—C2—C3	-176.3 (5)	N1—N2—C9—C14	-21.2 (7)
C7—O1—C3—C2	-0.6 (7)	C14—C9—C10—C11	2.1 (8)
C7—O1—C3—C4	178.2 (4)	N2-C9-C10-C11	179.8 (4)
C1—C2—C3—O1	177.6 (5)	C9—C10—C11—C12	-3.0 (8)
C1—C2—C3—C4	-1.0 (7)	C10-C11-C12-C13	1.9 (9)
O1—C3—C4—N3	2.2 (6)	C10-C11-C12-Br1	-176.6 (4)
C2—C3—C4—N3	-178.9 (5)	C11—C12—C13—C14	0.1 (10)
O1—C3—C4—C5	-177.4 (4)	Br1—C12—C13—C14	178.6 (5)
C2—C3—C4—C5	1.5 (7)	C12—C13—C14—C9	-1.0 (10)
N3—C4—C5—C6	179.3 (5)	C10—C9—C14—C13	-0.1 (9)
C3—C4—C5—C6	-1.1 (7)	N2-C9-C14-C13	-177.6 (6)
C4—C5—C6—C1	0.3 (8)		~ /

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N3—H3A···N2 ⁱ	0.88 (1)	2.38 (2)	3.228 (6)	163 (5)
N3—H3B…O1	0.88 (1)	2.28 (5)	2.628 (5)	103 (4)
Symmetry codes: (i) $x-1/2$, $-y+1/2$, $z-1/2$.				

Fig. 1

Fig. 2

